

Environmental and Cultural Factors Limiting Potential Yields

Water Security?

"Any one who can solve the problem of water will be worthy of two Nobel prizes – one for Peace and one for Science" -John F. Kennedy in 1968

Water and Irrigation - Objectives

The objectives of this lecture are to:

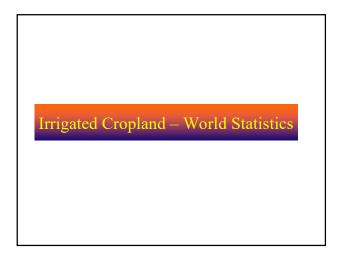
- Learn about the importance of water for ecosystem services, and to learn about the availability of fresh water for industrial, human, and irrigation purposes.
- Learn about irrigation trends across major regions.
- Learn about the influence of water on plants and ecosystems in general.
- Learn about water content of various plant parts.
- Learn about the interrelationships among soil, root, and leaf water potential and transpiration relationships under water deficit conditions.

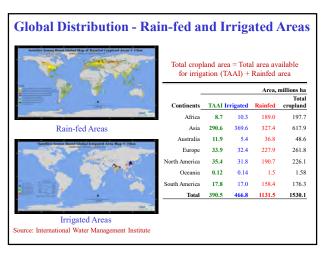
Water

Water plays essential roles in plants as a:

- ✓ Constituent
- ✓ Solvent
- Reactant in various chemical processes
- ✓ Maintenance of turgidity
- Therefore, everyone who grows plants, whether a single plant in pot or hundreds of acres of corn or cotton, is aware of the importance of water for successful growth, and finally economic product or yield.

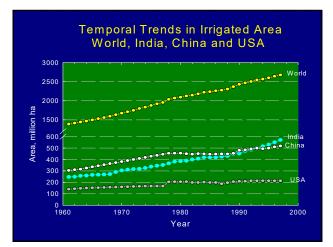
Water

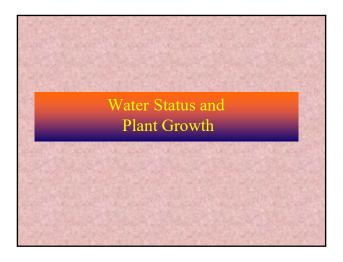

- Water on a global scale is plentiful. However,
 - ✓ 97% of it is saline.
 - \checkmark 2.25% is trapped in the glaciers and ice.
 - ✓ the rest, 0.75% is available in fresh water aquifers, rivers, and lakes.
- About 70% of the available fresh water is used for agricultural production, 22% for industrial purposes, and 8% for domestic purposes.
- Increasing competition for domestic and industrial purposes is likely reduce the water available for agriculture in the future.


World's fresh water ecosystems and goods and services

- Fresh water ecosystems occupy less than 1% of Earth's surface but deliver goods and services of enormous global value.
 - ✓ Inland fisheries capture accounts 12% of all fish consumed by humans.
 - ✓ Irrigated agriculture supplies amounts about 40% of the world's food crops.
 - ✓ Hydropower provides about 20% of world's electricity production.
 - ✓ About 12% of all animal species live in fresh water, and most other species depend in some way on fresh water ecosystems for their survival.

Water and Plants

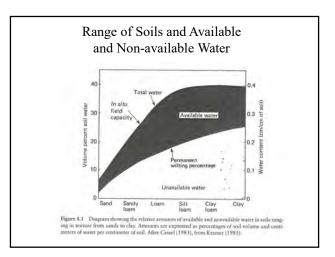

- Plants use large amounts of water in the growth process, with important consequences for agriculture and the distribution of plant communities.
- The distribution of plants over the earth's surface is controlled by the availability of the water (amount and seasonal distribution of precipitation) where ever temperature permits growth.
- Water is involved in nearly every aspect of plant activity, ranging from the transport of mineral nutrients and metabolites to growth, metabolism, and gene action.

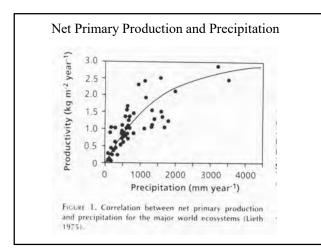


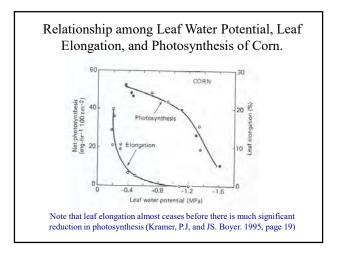
Country	Irrigated area	Percent of	Percent of
	million ha	world total	cultivated area
Asia			30
North America	25		
Russia			
lurope			
Africa			
South America			
Central America			
Australia and Oceania			
Developing countries	160		20
ndustrialized countries	66	29	
Vorld	226	100	15

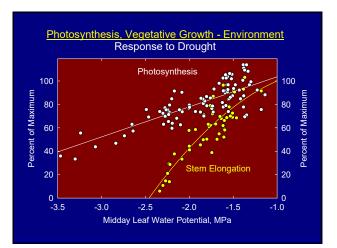
Coun	Countries with major irrigated areas, 199 (Adapted from Hoffman et al., 1990)		
Country	Irrigated area	% of country's cultivated	
	million ha	land irrigated	
India	55	33	
China	47	48	
Russia	21		
United States	19	10	
Pakistan	16	77	
Indonesia	7.3	34	
Iran	5.8	39	
Mexico	5.3	21	
Spain	3.3	16	
Turkey	3.3	12	
Thailand	3.2	16	
Egypt	3.2	100	
Japan	3.0	63	
Italy	3.0	25	
Romania	3.0	28	

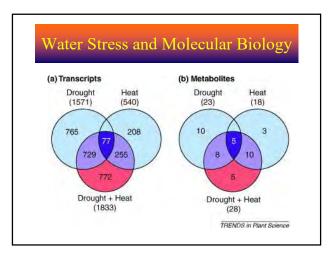
	Plant parts	Whites Content (%)	Reference	
Roots	Barley, apacal pursion	93.0	Kramer and Wiebe (1952)	
	Pinua tanda, apical portion-	90.2	Hodgson (1953)	
	P. treda, mycorthizal cones	74.5	Hodgson (1953)	
	Carrot, edible portion Sunflower, average of entire	88.2	Chattield and Adams (194)	
	root system	71.0	Wilson et al. (1953)	
Stems	Asparagus stem tips Sunthower, average of cotire	188.1	Daughters and Glenn (194)	
	stems on 7-week-old plant	87.5	Wilson et al. (1953)	
	Pinnes Landziania	48.0-01.0	Raher (1937)	
	Pinner exhibiting, philoson	66.0	Hockenpahler (1936)	
	P. echinata, wood	50.0-60.0	Huckenpahler (1936)	
	P. taeda, twigs	55.0-57.0	McDermotr (1941)	
Leaver	Lettuce, inner leaves	94.8	Chatfield and Adams (1940	
	Sunflower, average of all leaves			
	on 7-week-old plans	81.0	Welson et al. (1953)	
	Cabbuge, manare	86.0	Miller (1938)	
	Corn, mature	77.0	Miller (1938)	
France	Focuato	14. t.	Chatfield and Adams (1940	
	Watermelon	92.1	Chatfield and Adams (1940	
	Strawberry	89.1	Daughters and Glenn (1944	
	Apple	84.9	Daughters and Glenn (1946	
Streds.	Sweet corn, edible	84.8	Daughters and Glenn (1946	
	Field corn, dry	11.0	Chatfield and Adams (1940	
	Barley, huilden	10.2	Chatfield and Adams (1940	
	Peanot, raw	6.1	Chatfield and Adams (1940	

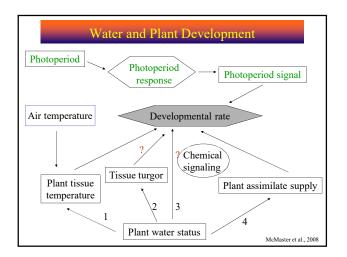

	l World Land Surface Subject to tal Limitations of Various Types
Limitation	Area of world soil subject to limitation (%)
Drought	27.9
Shallow soil	24.2
Mineral excess or defic	ciency 22.5
Flooding	12.2
Miscellaneous	3.1
None	10.1
Total	100
Temperature	14.8 (over laps with other stresses)

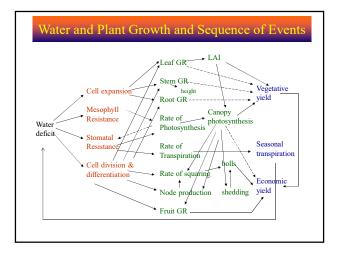

Physicoche	mical Environme	nts fot Majoe U.	aca Due in Disci 8. Crops*			navoratie	_
Crap	Record*	Average ¹ yield	Diseases	Asers	uge knues) Weeds	Physicschemical	,
Masze	19,300	4.600	8.66	136	697	12,300	6
Wheat	14,500	1,880	387	166	332	11,700	8
Soybean	7,390	1,610	342	73	415	4,950	é
Sorghum	20,100	2,830	369	369	333	16,000	8
70ar	10,600	4,720	623	119-	504	7,630	-
Barley	11,400	2,850	. 416	149	356	8,430	ŝ
Potato	94,100	28,200	8,370	6,170	1,322	30,000	4
Sugar beet	121,000	42,690	Ti3,650	7,990	3,530	54,400	4
Mean percentage of record yield	100	24.5	1.2	3.0	3.5	56.9	6
Note: Values are kilogene In the original work (Boy Eight, matrients, and so o	var, 1982], weed los	ses were considered	d to be physically	much her name the	e losses were a	nributable to compet	

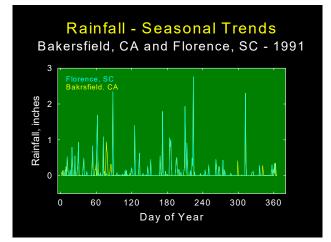

Table 12.3	Distribut	
	Indemnit	tion of Insurance ties for Crop Losses tited States from 1939
Cause crop l		Proportion of payments (%)
Droug Excess Cold Hail Wind Insect Diseas Flood Other	s Water	40.8 16.4 13.8 11.3 7.0 4.5 2.7 2.1 1.5

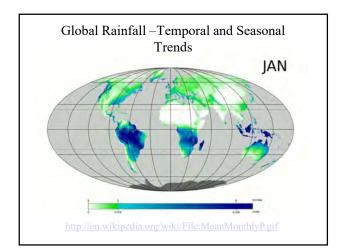

The Cost of Drought and High Temperature?

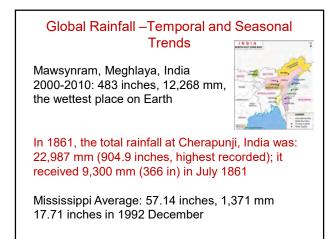

- According to the Agriculture Department's Risk Management Agency (RMA), nearly \$12.3 billion were paid to U.S. producers for losses incurred in 2013 year due to drought, high temperatures and failed irrigation, combined.
- Apart from *these extreme events*, environmental stresses are robbing the potential yield that we could achieve.
- Developing tools to mange crops for stressful environments are key for successful harvest.

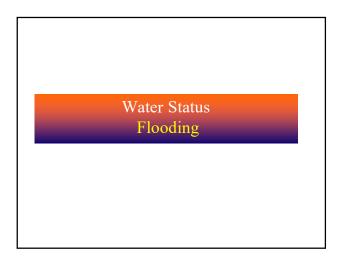


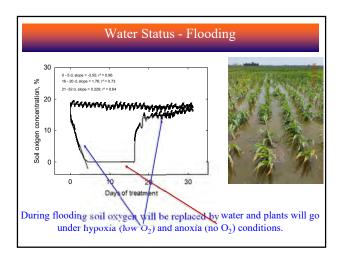


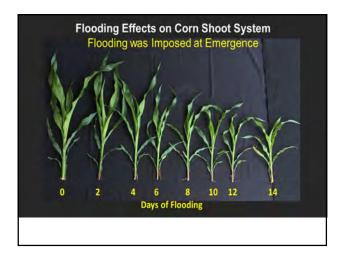


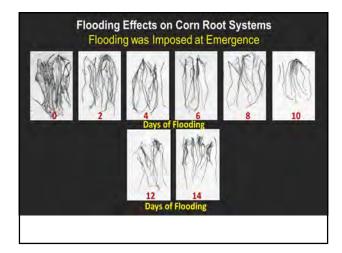


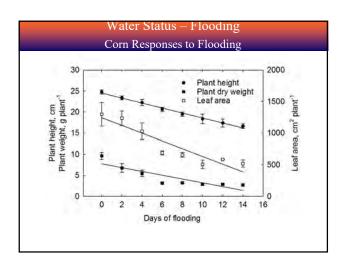


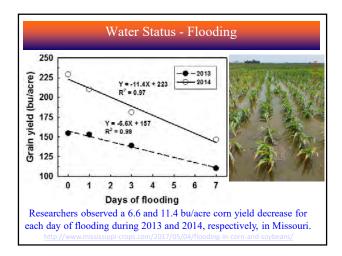


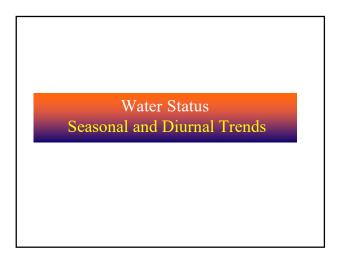


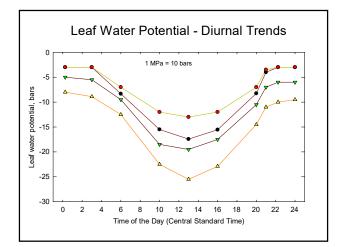


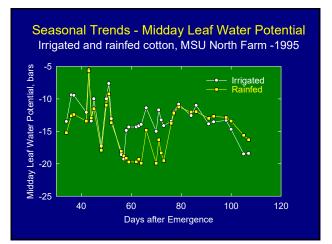


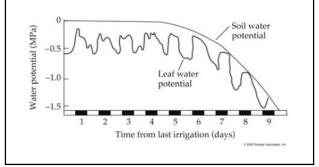


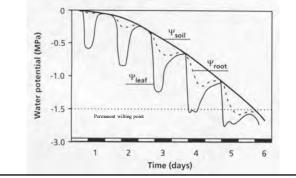












Typical diurnal changes in leaf and soil water potentials of a transpiring plant rooted in soil allowed to dry from a water potential near zero to a water potential at which wilting occurs. The dark bars indicate the night period (after Slater 1976)

Typical diurnal changes in leaf, root and soil water potentials of a transpiring plant rooted in soil allowed to dry from a water potential near zero to a water potential at which wilting occurs. The dark bars indicate the night period (after Slater 1976)

Typical diurnal changes in transpiration rate, leaf, root and soil water potentials of a transpiring plant rooted in soil allowed to dry from a water potential near zero to a water potential at which wilting occurs. The dark bars indicate the night period (Fitter and Hay, 2002)

Reference/Reading Material

- McMaster et al. 2008. Simulating crop phenological responses to water deficits, CSSA publication (Read).
- Volmar, K.M. and W. Woodbury. 1995. Plant-Water-Relationships. In: Handbook of Plant and Crop Physiology, by M. Pessarakli. Marcel Dekker, Inc, New York (Must Read).
- Sandra L. Postel. 2006. For Our Thirsty World, Efficiency or Else, Science, 313: 1046 (Causal reading).
- Vorosmarty et al., 2008. Global water resources: vulnerability from climate change and population growth, Science 289: 284 (Causal reading).
- Peter H. Gleick, 2003. Global Freshwater Resources: Soft-Path Solutions for the 21st Century, Science 302, 1524 (Causal reading).