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Environmental Plant Physiology

ODbjectives

 The objectives of this course are to learn plant responses to
abiotic stresses, particularly plant growth and development,
and to learn modeling methodologies on how to integrate
those plant processes under multiple stress conditions.

At the end, the students are expected to:

v" understand individual as well as interactive abiotic
stress effects on photosynthesis, respiration, growth,
development and finally yield.

v" understand on how to develop methodologies to
Integrate multiple stress factor effects on various
plant/canopy processes.



Environmental and Cultural Factors
Limiting Potential Yields
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Atmospheric Carbon Dioxide - Objectives

The objectives of this lecture are:

« To learn global, regional and local spatial and
temporal trends in atmospheric CO.,.

 To learn diurnal trends in atmospheric CO.,.

» Contributing factors for fluxes/changes in
global CO, concentration.

« The importance of atmospheric CO, and its role
or effects on plants and ecosystems in general.



Why are we concerned with CO2?

Atmospheric CO, is essential for life on earth.

Plants grow through photosynthesis, a process that uses the energy from
sunlight to combine carbon dioxide (CO,) from the air with water to make
carbohydrates plus oxygen.

Light, Plant, Water, Nutrients
6 CO,+ 6 H,0 >» CgH0+60,

The carbohydrates formed through photosynthesis feed not only the plants
but also almost all other organisms on earth, including those that eat the
plants and those that eat the animals that eat the plants.

Now, as the atmospheric CO, is rising, we are seeing almost parallel
decreases in atmospheric oxygen.

The oxygen concentration is so much higher than that of CO, that the
decrease in oxygen from fossil fuel combustion is not a problem, but it
demonstrates the connection between these two critically important
atmospheric constituents.



Plant Responses to Atmospheric Carbon Dioxide
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Global Carbon Dioxide Concentrations
Temporal Trends in Global CO,
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Global Carbon Dioxide Concentrations
CO2-Sensing Mechanism — How do plants control their mouths

Guard cells (swollen) Guard cells (shrunken)

When stomata are open, a typical plant loses
about 200-500 molecules of water through
evaporation for each molecule of CO2 taken.

The CO2 sensors were identified as 1) a "high Science Advances. 2022
leaf temperaturel” protein kinase known as ’ ’

HT1 and 2) specific members of a mitogen- https://www.science.org/doi/ep
activated protein kinase family, or "MAP" df/lO.1126/sciadv.abq6161

kinase enzyme, known as MPK4 and MPK12.


https://www.science.org/doi/ep

Photosynthesis and Management
Response to Carbon Dioxide — Cotton, a C3 Plant
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A Hierarchy of Plant Responses to COz2 — Cs Plants
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Crop Responses to Atmospheric Carbon Dioxide

Photosynthesis response to CO, _Species variability

« 25-32 million years ago — Convergent
evolution.

« 6-7 million years ago — Became
ecologically significant.

« Currently about 3.2% of higher plants
contribute to about 30% of global carbon
fixation & 25% of land plant biomass.
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Plant Adaptations to Atmospheric Carbon Dioxide
The direct effect of increased CO, on crop photosynthesis

v

v

might lead to higher global food production

Weeds: Plants are NOT unigue and UNIFORM in the
stimulation of their photosynthesis by elevated CO.,.

Losses to Pests: Several recent studies show that insects
eat more high-CO2-grown material because of
decreased protein levels.

Climate: The connection between CO, and climate is
Increasingly well understood, with the vast majority of
evidence indicating that the continued build-up of these
radiative gases causes gradual warming and other
changes in climate.



Climate Change and Crop Species Variation

Photosynthesis — Carbon Dioxide Concentration
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There are about 380,000

known species of plants on the planet
and 35,687 are utilized for various
purposes, spanning 10 use categories.
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Atmospheric CO, concentration (ppm)

Of the 250,000 higher plant species that produce seed:

C3 photosynthetic model = 222,000 (89%)
C4 photosynthetic model = 8,100 (3.2%)
Crassulacean Acid Metabolic

(CAM) photosynthetic model = 20,000 (8%)
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Global Carbon Fluxes
Global carbon emissions and Carbon fixation
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CO2 Concentration, ppm

Global Carbon Dioxide Concentrations
Temporal trends in CO, from 1750 to 2022
Ice-core data and Mauna Loa (HI) measurements
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Atmospheric Carbon Dioxide Concentration
The annual rate of increase in CO, concentration (ppm)
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Atmospheric Carbon Dioxide Concentration
Pole to pole measurement sites
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Atmospheric Carbon Dioxide Concentration
Temporal trends in CO, concentration from pole to pole
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Global Carbon Dioxide Concentrations
Trends — Atmospheric Carbon Dioxide — 2022 Year

One year of CO, daily and weekly means at Mauna Loa
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Global Circulation Models

Predictive capabilities — Data requirements
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Greenhouse Gases and Climate Change
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Global Carbon Dioxide Concentrations
Projected trends

IPCC ARS Greenhouse Gas Concentration Pathways

Representative Concentration Pathways (RCPs) from the fifth
Assessment Report by the International Panel on Climate Change
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Future Trends in Global Surface Air Temperatures
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This shows temperatures associated with seven different carbon dioxide (CO2) emissions scenarios. The low end of the IPCC range suggests that
in the year 2100 the concentration of CO2 in the atmosphere would be approximately 550 parts per million (ppm), or approximately double the
pre-industrial value, while an alternate scenario suggests that the concentration could be close to 1,000 ppm. The other five scenarios fall
somewhere in between. http://ccir.ciesin.columbia.edu/nyc/ccir-ny_qle.html


http://ccir.ciesin.columbia.edu/nyc/ccir-ny_q1e.html
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Atmospheric Carbon Dioxide Concentration
Sources - Cause of recent increases in Atmospheric CO, concentration

Global CO2 emissions from fossil fuels and land use change
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Source: Global Carbon Project. (2021). Supplemental data of Global Carbon Budget 2021 (Version 1.0) [Data set]. Global Carbon Project.
OurWorldInData.org/co2-and-other-greenhouse-gas-emissions « CC BY



Global Carbon Emissions

Annual share of global CO- emissions, 2020

Each country's share of global carbon dioxide (CO,) emissions. This is measured as each country's emissions
divided by the sum of all countries' emissions in a given year plus international aviation and shipping (known as
'bunkers') and 'statistical differences' in carbon accounts.

. = £

No data 0% 0.5% 1% 2% 5% 10% 25%
— ‘|

Source: Our World in Data based on the Global Carbon Project OurWorldInData.org/co2-and-other-greenhouse-gas-emissions ¢ CC BY



Global Carbon Emissions
Top 20 Countries

Annual CO2 emissions from fossil fuels, by world region

International
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Note: This measures CO: emissions from fossil fuels and cement production only — land use change is not included. 'Statistical differences'
(included in the GCP dataset) are not included here.



Climate Change and Crop Production
CO2, NPK Use, Cotton Acreage and Yields
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Cotton Yield Trends

Best management practices, genetics, CO,
Relative contributions

« 1940 (306) to 1997

5 Yield (364) = 58 ppm CO,
could increase yield
by about 19%.

» (Genetics to about
50%.

» N use efficiency
about 10%.

e Best management
practices (BMP’s)
about 270%.

Genetics

Relative Response

Ref: Reddy et al. 2000. Crop
ecosystem responses to
Climatic change: Cotton. In:
0 , , , , , , . . Climate Change and Global
Crop Productivity, Ed. KR
1920 1930 1940 1950 1960 1970 1980 1990 2000 Reddy and HF Hodges, CABI,

Year UK, page 161-187.




Atmospheric [CO,] Grain & Yield Quality
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What will be the short-term (<100 years) and the long-term (>millions of
years) effects of projected changes in climate and, particularly, CO2?
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Fig. 1 Changesin atmospheric [CO,] throughout the evolution of vascular land plants. The upper right insert shows the past million yr
expanded in order to show low [CO.] during glacial periods. The upper left insert is expanded to show low [CO.] periods over the last
10 million yr (data are from Petit et al., 1999; Monnin et al., 2001; Siegenthaler et al., 2005; Berner, 2006; Liithi et al., 2008; Keeling et al.,
2005; Tripati et al., 2009).

IPCC ARS Greenhouse Gas Concentration Pathways

Representative Concentration Pathways (RCPs) from the fifth
Assessment Report by the International Panel on Climate Change
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Summary

Atmospheric CO, Is a critical component of the
atmosphere.

Increases in CO, will have both positive and negative
Impacts on agriculture and natural ecosystems.

The negative impacts expressed through climate
change and global warming affect not only agriculture
but also other sectors.

Overall, increasing CO, is likely to have serious
consequences.



v

v

Summary

It is extremely unlikely that terrestrial uptake of CO,
will be sufficient to prevent these climate problems.

A major adaptive response for agriculture ecosystems
will be breeding or designing new cultivars: heat-
and-cold and drought-resistant crop varieties that
may be better adapted to a new climate (short-term
fixes).

Plants In the natural ecosystems will have &=
to cope with changes in climate and adapt ’
accordingly. -

Additional steps to limit CO, emissions by world
nations are another possibility (long-term strategies).



Suggested Reading Material:

1. Climate Change and the Global Harvest. C. Rosenzweig and D.
Hillel. 1998. Oxford University Press, pages 1-69.

2. Climate change and variability by L. O. Mearns. In: Climate
Change and Global Crop Productivity, edited by K. R. Reddy and
H. F. Hodges. 2000. Pages 7-35.

3. Agricultural contribution to Greenhouse gas emissions by D. C.
Reicosky, J. L. Hatfield and R. L. Sass. In: Climate Change and
Global Crop Productivity, edited by K. R. Reddy and H. F.
Hodges. 2000. Pages 37-55.

4. David B. Lobell and Sharon M. Gourdji. 2012. The Influence of
Climate Change on Global Crop Productivity. Plant Physiology.
160: 1686-1697.


https://www.cabi.org/cabebooks/ebook/20073012550
https://www.cabi.org/cabebooks/ebook/20073012551
https://doi.org/10.1104/pp.112.208298

Suggested Reading Material:

https://www.nytimes.com/2018/05/23/climate/rice-global-
warming.html


https://www.npr.org/sections/thesalt/2018/06/19/616098095/as-carbon-dioxide-levels-rise-major-crops-are-losing-nutrients
https://www.npr.org/sections/thesalt/2018/06/19/616098095/as-carbon-dioxide-levels-rise-major-crops-are-losing-nutrients
https://www.nature.com/scitable/knowledge/library/effects-of-rising-atmospheric-concentrations-of-carbon-13254108/
https://www.nature.com/scitable/knowledge/library/effects-of-rising-atmospheric-concentrations-of-carbon-13254108/
https://www.vox.com/2018/5/24/17384110/rice-vitamin-nutrition-food-security-co2
https://www.vox.com/2018/5/24/17384110/rice-vitamin-nutrition-food-security-co2
https://www.politico.com/agenda/story/2017/09/13/food-nutrients-carbon-dioxide-000511/
https://www.politico.com/agenda/story/2017/09/13/food-nutrients-carbon-dioxide-000511/
https://www.sciencedaily.com/releases/2019/07/190718085308.htm
https://www.nytimes.com/2018/05/23/climate/rice-global
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