Environmental Factors Rainfall and Irrigation

K. Raja Reddy Krreddy@pss.msstate.edu

Mississippi State University A Land-Grant Institution

Environmental and Cultural Factors Limiting Potential Yields

- Atmospheric Carbon Dioxide
- Solar Radiation
- ► Temperature (Extremes)
- ≻Water
- ► Wind
- ≻Nutrients (N and K)
- ≻Others, ozone etc.,
- Growth Regulators (PIX)

Water and Irrigation - Objectives

The objectives of this lecture are to:

- Learn about the importance of water for ecosystem services, and to learn about the availability of fresh water for industrial, human and irrigation purposes.
- Learn about irrigation trends across major regions.
- Learn about the influence of water on plants and ecosystems in general.
- Learn about water content of various plant parts.
- Learn about the interrelationships between soil, root, leaf water potential and transpiration relationships under water deficit conditions.

Water

Water plays essential roles in plants as a:

- ✓ Constituent
- ✓ Solvent
- ✓ Reactant in various chemical processes
- ✓ Maintenance of turgidity

Therefore, everyone who grows plants, whether a single plant in pot or hundreds of acres of corn or cotton, is aware of the importance of water for successful growth, and finally economic product or yield.

Water

- Water on a global scale is plentiful. However,
 - ✓ 97% of it is saline
 - $\checkmark~2.25\%$ is trapped in the glaciers and ice
 - ✓ the rest, 0.75% is available in fresh water aquifers, rivers and lakes.
- About 70% of the available fresh water is used for agricultural production, 22% for industrial purposes, and 8% for domestic purposes.
- Increasing competition for domestic and industrial purposes is likely reduce the water available for agriculture in the future.

World's fresh water ecosystems and goods and services

- Fresh water ecosystems occupy less than 1% of Earth's surface but deliver goods and services of enormous global value.
 - ✓ Inland fisheries capture accounts 12% of all fish consumed by humans.
 - ✓ Irrigated agriculture supplies amounts about 40% of the world's food crops.
 - ✓ Hydropower provides about 20% of world's electricity production.
 - ✓ About 12% of all animal species live in fresh water, and most other species depend in some way on fresh water ecosystems for their survival.

Water and Plants

- Plants use large amounts of water in the growth process, with important consequences for agriculture and the distribution of plant communities.
- The distribution of plants over the earth's surface is controlled by the availability of the water (amount and seasonal distribution of precipitation) where ever temperature permits growth.
- Water is involved in nearly every aspect of plant activity, ranging from the transport of mineral nutrients and metabolites to growth, metabolism, and gene action.

Irrigated Cropland – World Statistics

Global Distribution - Rain-fed and Irrigated Areas

Rain-fed Areas

Irrigated Areas

Worldwide Distribution of Irrigated Areas - 1984

(Adapted from Hoffman et al., 1990)

Country	Irrigated area Percent of Percent of		Percent of
	million ha	world total	cultivated area
Asia	137	62	30
North America	25	9	8
Russia	21	9	8
Europe	16	7	11
Africa	10	5	6
South America	8	4	6
Central America	7	3	18
Australia and Oceania	2	1	4
Developing countries	160	71	20
Industrial countries	66	29	9
World	226	100	15

Countries with major irrigated areas, 1996

(Adapted from Hoffman et al., 1990)

Country	Irrigated area	% of country's cultivated
	million ha	land irrigated
India	55	33
China	47	48
Russia	21	9
United States	19	10
Pakistan	16	77
Indonesia	7.3	34
Iran	5.8	39
Mexico	5.3	21
Spain	3.3	16
Turkey	3.3	12
Thailand	3.2	16
Egypt	3.2	100
Japan	3.0	63
Italy	3.0	25
Romania	3.0	28

Temporal Trends in Irrigated Area World, India, China and USA

Water Status and Plant Growth

Water content of various plant tissues expressed as

	Plant parts	Water content (%)	Reference
Roots	Barley, apical portion	93.0	Kramer and Wiebe (1952)
	Pinus taeda, apical portion	90.2	Hodgson (1953)
	P. taeda, mycorrhizal roots	74.8	Hodgson (1953)
	Carrot, edible portion	88.2	Chatfield and Adams (1940
	Sunflower, average of entire		
	root system	71.0	Wilson et al. (1953)
Stems	Asparagus stem tips	88.3	Daughters and Glenn (1946
	Sunflower, average of entire		
	stems on 7-week-old plant	87.5	Wilson et al. (1953)
	Pinus banksiana	48.0-61.0	Raber (1937)
	Pinus echinata, phloem	66.0	Huckenpahler (1936)
	P. echinata, wood	50.0-60.0	Huckenpahler (1936)
	P. taeda, twigs	55.0-57.0	McDermott (1941)
Leaves	Lettuce, inner leaves	94.8	Chatfield and Adams (1940
	Sunflower, average of all leaves		•
	on 7-week-old plant	81.0	Wilson et al. (1953)
	Cabbage, mature	86.0	Miller (1938)
	Corn, mature	77.0	Miller (1938)
Fruits	Tomato	94.1	Chatfield and Adams (1940)
	Watermelon	92.1	Chatfield and Adams (1940)
	Strawberry	89.1	Daughters and Glenn (1946
	Apple	84.0	Daughters and Glenn (1946
Seeds	Sweet corn, edible	84.8	Daughters and Glenn (1946
	Field corn, dry	11.0	Chatfield and Adams (1940)
	Barley, hull-less	10.2	Chatfield and Adams (1940)
	Peanut, raw	5.1	Chatfield and Adams (1940)

Area of Total World Land Surface Subject to Environmental Limitations of Various Types

Limitation	Area of world soil subject to limitation (%)
Drought	27.9
Shallow soil	24.2
Mineral excess or def	iciency 22.5
Flooding	12.2
Miscellaneous	3.1
None	10.1
Total	100
Temperature	14.8 (over laps with other stresses)

Water

	Record ⁶	Average ^b	Average losses ^c			
Crop	yield	yield	Diseases	Insects	Weeds	Physicochemical
Maize	19,300	4,600	836	836	697	12,300
Wheat	14,500	1,880	387	166	332	11,700
Soybean	7,390	1,610	342	73	415	4,950
Sorghum	20,100	2,830	369	369	533	16,000
Oat	10,600	1,720	623	119	504	7,630
Barley	11,400	2,050	416	149	356	8 4 3 0
Potato	94,100	28,200	8,370	6,170	1.322	50,000
Sugar beet	121,000	42,600	10,650	7,990	5,330	54 400
Mean percentage of record yield	100	21.5	5.1	3.0	3.5	66.9

Table 12.1 Record Yields, Average Yields, and Yield Losses Due to Diseases. Insects, Weeds, and Unfavorable

Note. Values are kilograms per hectare. Record and average yields are as of 1975.

"In the original work (Boyer, 1982), weed losses were considered to be physicochemical because the losses were attributable to competition for light, nutrients, and so on. On the other hand, weeds are of biological origin and it may be argued that the losses should be included with insects and diseases. For simplicity, the latter approach is taken here, which slightly alters the values calculated for each loss in comparison with Boyer (1982).

^bFrom Wittwer (1975).

^eCalculated according to U.S. Department of Agriculture (1965).

^dPhysicochemical losses calculated as record yield—(average yield + disease loss + insect loss + weed loss).

Distribution of Insurance Indemnities and Crop Losses in the US – 1939 to 1978

Table 12.3	Distribution of Insurance
	Indemnities for Crop Losses
	in the United States from 1939
	to 1978ª

Cause of crop loss	Proportion of payments (%)
Drought	40.8
Excess water	16.4
Cold	13.8
Hail	11.3
Wind	7.0
Insect	4.5
Disease	2.7
Flood	2.1
Other	1.5

^aFrom U.S. Department of Agriculture (1979).

Range of Soils and Available and Non-available Water

Figure 4.1 Diagram showing the relative amounts of available and unavailable water in soils ranging in texture from sands to clay. Amounts are expressed as percentages of soil volume and centimeters of water per centimeter of soil. After Cassel (1983), from Kramer (1983).

Net Primary Production and Precipitation

FIGURE 1. Correlation between net primary production and precipitation for the major world ecosystems (Lieth 1975).

Relationship among Leaf Water Potential, Leaf Elongation, and Photosynthesis of Corn.

Note that leaf elongation almost ceases before there is much significant reduction in photosynthesis (Kramer, P.J, and JS. Boyer. 1995, page 19)

Photosynthesis, Vegetative Growth - Environment Response to Drought

Water Stress and Molecular Biology

Water and Plant Development

Water and Plant Growth and Sequence of Events

Rainfall Trends

Rainfall - Seasonal Trends Bakersfield, CA and Florence, SC - 1991

Global Rainfall – Temporal and Seasonal Trends

http://en.wikipedia.org/wiki/File:MeanMonthlyP.gif

Water Status Seasonal and Diurnal Trends

Leaf Water Potential - Diurnal Trends

Seasonal Trends - Midday Leaf Water Potential Irrigated and rainfed cotton, MSU North Farm -1995

Typical diurnal changes in leaf and soil water potentials of a transpiring plant rooted in soil allowed to dry from a water potential near zero to a water potential at which wilting occurs. The dark bars indicate the night period (after Slater 1976)

Typical diurnal changes in leaf, root and soil water potentials of a transpiring plant rooted in soil allowed to dry from a water potential near zero to a water potential at which wilting occurs. The dark bars indicate the night period (after Slater 1976)

Typical diurnal changes in transpiration rate, leaf, root and soil water potentials of a transpiring plant rooted in soil allowed to dry from a water potential near zero to a water potential at which wilting occurs. The dark bars indicate the night period (Fitter and Hay, 2002)

Figure 4.9

Schematic representation of the changes in leaf, root surface, and bulk soil water potentials, and in the rate of transpiration, associated with the exhaustion of the available soil water over a five day period. See text for full description (adapted from Slatyer, 1967)

Reference/Reading Material

- McMaster et al. 2008. Simulating crop phenological responses to water deficits, CSSA publication (Read).
- Volmar, K.M. and W. Woodbury. 1995. Plant-Water-Relationships. In: Handbook of Plant and Crop Physiology, by M. Pessarakli. Marcel Dekker, Inc, New York (Must Read).
- Sandra L. Postel. 2006. For Our Thirsty World, Efficiency or Else, Science, 313: 1046 (Causal reading).
- Vorosmarty et al., 2008. Global water resources: vulnerability from climate change and population growth, Science 289: 284 (Causal reading).
- Peter H. Gleick, 2003. Global Freshwater Resources: Soft-Path Solutions for the 21st Century, Science 302, 1524 (Causal reading).