
Food for Thought: Lower-Than-
Expected Crop Yield Stimulation
with Rising CO2 Concentrations
Stephen P. Long,1,2,3* Elizabeth A. Ainsworth,4,1,3 Andrew D. B. Leakey,3,1

Josef Nösberger,5 Donald R. Ort4,1,2,3

Model projections suggest that although increased temperature and decreased soil moisture will act
to reduce global crop yields by 2050, the direct fertilization effect of rising carbon dioxide
concentration ([CO2]) will offset these losses. The CO2 fertilization factors used in models to project
future yields were derived from enclosure studies conducted approximately 20 years ago. Free-air
concentration enrichment (FACE) technology has now facilitated large-scale trials of the major
grain crops at elevated [CO2] under fully open-air field conditions. In those trials, elevated [CO2]
enhanced yield by È50% less than in enclosure studies. This casts serious doubt on projections
that rising [CO2] will fully offset losses due to climate change.

M
uch effort has been put into linking

models of climate and crop growth to

project future changes in crop yields

and food supply across the globe (1–4). Pro-

jections reviewed by the Intergovernmental

Panel on Climate Change (IPCC) suggest that

increased temperature and decreased soil mois-

ture, which would otherwise reduce crop yields,

will be offset by the direct fertilization effect

of rising carbon dioxide concentration (ECO
2
^)

(5–7). The IPCC projections suggest that total

crop yield may rise when averaged across the

globe, but this net gain will result from generally

lower yields in the tropics and increased yields in

temperate zones. The accuracy of these projec-

tions and thus future food security depend crit-

ically on the magnitude of the CO
2
fertilization

effect under actual growing conditions.

Atmospheric ECO
2
^ has risen from È260

parts per million (ppm) approximately 150 years

ago to 380 ppm today (8). Yet ECO
2
^ is marked-

ly uniform across the globe; so, in contrast to

temperature and soil moisture, there is no con-

sistent spatial variation on which to estimate

yield responses to increasing ECO
2
^. Similarly, it

is not easy to alter ECO
2
^ experimentally around

a crop in the field. As a result, most information

about crop responses to elevated ECO
2
^ is ob-

tained from studies in greenhouses, laboratory

controlled-environment chambers, and transpar-

ent field chambers, where released CO
2
may be

retained and easily controlled. These settings

have provided the basis for projecting CO
2
fer-

tilization effects on the major food crops: maize,

rice, sorghum, soybeans, and wheat.

Crops sense and respond directly to rising

ECO
2
^ through photosynthesis and stomatal

conductance, and this is the basis for the fer-

tilization effect on yield (9). In C
3
plants, meso-

phyll cells containing ribulose-1,5-bisphosphate

carboxylase-oxygenase (RuBisCO) are in direct

contact with the intercellular air space that is

connected to the atmosphere via stomatal pores

in the epidermis. Hence, in C
3
crops, rising

CO
2
increases net photosynthetic CO

2
uptake

because RuBisCO is not CO
2
-saturated in

today_s atmosphere and because CO
2
inhibits

the competing oxygenation reaction leading to

photorespiration. RuBisCO is highly conserved

across terrestrial plants, so instantaneous re-

sponses to increased ECO
2
^ may be generalized

across C
3
plants, including rice, soybeans, and

wheat. In theory, at 25-C, an increase in ECO
2
^

from the present-day value of 380 ppm to that

of 550 ppm, projected for the year 2050, would

increase C
3
photosynthesis by 38% (9). In con-

trast, in C
4
crops such as maize and sorghum,

RuBisCO is localized to bundle sheath cells in

which CO
2
is concentrated to three to six times

atmospheric ECO
2
^ (10). This concentration is

sufficient to saturate RuBisCO and in theory

would prevent any increase in CO
2
uptake with

rising ECO
2
^. Although C

4
crops may not show

a direct response in photosynthetic activity, an

indirect increase in the efficiency of water use

via reduction in stomatal conductance may still

increase yield (9).

How have CO2 fertilization factors been
derived? Most models used to predict future

crop yields, including those within the IPCC

(5), are from two families: the Decision Sup-

port System for Agrotechnology Transfer

(DSSAT) (6, 11, 12) and the Erosion Produc-

tivity Impact Calculator (EPIC) (13–15). Studies

using DSSAT assume CO
2
fertilization factors

based on the method of Peart et al. (3), which

used summaries for soybeans (16), maize (17),

wheat (18), and rice (18). Studies using EPIC

(13–15) assume CO
2
fertilization factors based

on the method of Stockle et al. (4), which

parameterized a CO
2
response function to

reproduce the mean yield stimulations reported

for elevated [CO
2
] by Kimball (18). Tracing

DSSAT and EPIC methods back reveals that the

magnitude of the CO
2
fertilization effects in

these models is primarily based on data from

three literature reviews from the 1980s (16–18).

The CO
2
fertilization effects reported in these

reviews for the major crops are given in Table 1
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Table 1. Percentage increases in yield, biomass, and photosynthesis of crops grown at elevated
[CO2] (550 mmol molj1) relative to ambient [CO2] in enclosure studies versus FACE experiments.
Data for enclosure studies were summarized by Kimball (18), Cure and Acock (17), and Allen et al.
(16) and in Fig. 2. Mean response ratios from these reviews were adjusted to an elevated [CO2] of
550 mmol molj1 by means of the nonrectangular hyperbolic functions for C3 and C4 species from
Fig. 2. The values that summarize all chamber studies shown in Fig. 2 are given in the row entitled
‘‘enclosure studies.’’ Percentage increases for FACE studies were generated by meta-analysis [see
supporting online material (SOM) and table S2] (37).

Source Rice Wheat Soybeans C4 crops

Yield
Kimball (1983) 19 28 21 –
Cure and Acock (1986) 11 19 22 27
Allen et al. (1987) – – 26 –
Enclosure studies – 31 32 18
FACE studies 12 13 14 0*

Biomass
Cure and Acock (1986) 21 24 30 8
Allen et al. (1987) – – 35 –
FACE studies 13 10 25 0*

Photosynthesis
Cure and Acock (1986) 35 21 32 4
FACE studies 9 13 19 6

*Data from only 1 year in Leakey et al. (30).
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after adjustment to estimate crop performance at

a common [CO
2
] of 550 ppm. Collectively, the

fertilization factors averaged across the C
3
crops

(rice, wheat, and soybeans) are 24% for yield,

27% for biomass, and 29% for photosynthesis.

The responses for maize were lower except for

yield, which was reported to increase by 27%

(Table 1). All studies included in the reviews

used enclosures, such as controlled environmen-

tal chambers, transparent field enclosures, or

open-top chambers. Since the 1980s, many fur-

ther chamber studies have been conducted.

When these are compiled for wheat and soy-

beans, an even larger yield fertilization factor of

31% is suggested (Table 1). Although this is a

wealth of data on which to project a CO
2
fertil-

ization effect for crops across the globe, no

agrochemical or plant-breeding company would

base its business plan for a new chemical or

variety solely on greenhouse studies without

rigorous field trials (19, 20). Yet our current

projections of future world food supply are

based on such potentially inadequate data.

Why might chamber studies be inadequate
for predicting future yields? Many chamber

studies used plants grown in pots, which are

now known to alter the response of plants to

elevated [CO
2
] (21). Most of the field studies

used open-topped and transparent-walled

chambers, up to 2 m in diameter. Despite being

partially open to the atmosphere, important en-

vironmental differences remain. In a chamber

carefully designed to minimize environmental

differences, receiving È75% of full sunlight,

the temperature inside the chamber was 4.3-C
warmer and the water vapor pressure deficit

was 0.8 kPa higher (22) than outside the

chamber. The transmission of sunlight into the

chambers was lower and the ratio of diffuse to

direct sunlight increased. Other chamber types

would cause even greater perturbation of the

natural environment. All chambers alter air

flow and intercept rainfall. Access by pests

and diseases is restricted, but if they gain ac-

cess, higher humidity and more shelter may

accentuate epidemics. As a result, the effect of

the chamber on plants is often greater than that

of elevated [CO
2
] (23). In agronomic trials,

buffer rows are used between treatments; typ-

ically the width of this zone is twice the height

of the crop. Because of the small practical size

of chambers, most or all of the treated crop will

be within this zone, which could exaggerate the

response to elevated [CO
2
] (23). To overcome

these limitations, free-air concentration enrich-

ment (FACE) was developed.

How does FACE work? A typical FACE ap-

paratus consists of a 20-m-diameter plot within

the crop field (Fig. 1A), in which CO
2
is re-

leased just above the crop surface on the upwind

side of the plot. Wind direction, wind velocity,

and [CO
2
] (or ozone concentration) are mea-

sured at the center of the plot. Fast-feedback

computer control then adjusts the positions and

amount of CO
2
released at different points

around the plot. These systems have been en-

gineered so that they can operate continuously

from sowing to harvest and maintain [CO
2
]

within the plot to within T10% of the target

level, either 550 or 600 ppm, for È90% of the

time (9, 24–26) (Fig. 1B). Elevated [CO
2
] de-

creases transpiration and therefore evaporative

cooling, so that in sunlight the crop is warmer.

This can serve to illustrate the uniformity of

treatment (Fig. 1B).

Mini-FACE systems as small as 1 m in di-

ameter have been developed and have proved

invaluable in ecosystem studies where the focus

is on the effect of increased input of carbon

(27), but they do not escape the problems of

enclosures with respect to scale. Avoiding edge

effects associated with small plots is critical

when the objective is to determine an exact

CO
2
fertilization factor for crops. Our analysis

has therefore been limited to full-size FACE

systems of plots 98 m in diameter, investigating

the five major global food crops and managed

pasture systems (table S1): wheat at Maricopa,

Arizona, USA, in 1992, 1993, 1996, and 1997;

managed grassland at Eschikon, Switzerland,

from 1993 to 2002; managed pasture at Bulls,

New Zealand, from 1997 to 2002; sorghum at

Maricopa, Arizona, USA, in 1998 and 1999;

rice at Shizukuishi, Japan, from 1998 to 2000;

and soybeans at Urbana-Champaign, Illinois,

USA, from 2001 to 2005 and maize at the same

location in 2002 and 2004 (26, 28).

What have we learned from the FACE ex-
periments? The response of plant production to

[CO
2
] is approximately hyperbolic, increasing

linearly at subambient concentration and satu-

rating at around 800 to 2000 ppm. The ratio of

yield at treatment [CO
2
] to yield at atmospheric

[CO
2
] was calculated for over 340 independent

chamber studies. Hyperbolas of the response

of yield to [CO
2
] were then fit for wheat, soy-

beans, and C
4
grains (maize and sorghum

combined) (Fig. 2). Only one replicated FACE

experiment was conducted with each of these

crops, but these experiments were repeated over

2 to 5 years. It was notable that for each crop,

the stimulation of yield observed in FACE

experiments fell well below (about half) the

value predicted from chambers (Fig. 2). This

was apparent for total biomass and most marked

for photosynthesis. Notably, the stimulation of

photosynthesis by elevated [CO
2
] in enclosure

studies of rice was four times the value observed

in the rice FACE experiment (Table 1). With so

few FACE studies, it might be thought that

these lower values are the result of chance.

Table 1 shows that for three key production

measures in four crops, only 1 of the 12 items is

not lower than the chamber equivalent. The

probability of this outcome being attributed to

chance is remote (P 0 0.003).

Results from FACE experiments with C
4

crops are consistent with CO
2
having no direct

effect on photosynthesis, but there may be

an indirect effect through the amelioration of

drought stress by reduced stomatal conductance

at elevated [CO
2
] (29–31). This fits the theoret-

Fig. 1. (A) One of the
16 FACE plots of soy-
beans at the University
of Illinois SoyFACE facil-
ity. CO2 is released into
the wind from nozzles in
the green pipe, on the
upwind side of the plot.
Release rate is determined
by wind speed and [CO2],
which is measured at the
center of each ring. (B)
The false-color infrared
image provides a simple
visualization of the uni-
formity of CO2 treatment within a FACE plot. Here the atmosphere around a
maize crop within the octagonal plot is maintained at 550 ppm [CO2], whereas
the rest of the field is at the current ambient [CO2] of È380 ppm. Maize
growing inside an elevated [CO2] plot was warmer in full sunlight than maize
growing under ambient [CO2] outside the plot at 15:30 on 15 July 2004. At
that time, the average canopy temperature inside the four elevated [CO2] plots

at SoyFACE was 27.9 T 0.2-C, significantly higher than canopy temperatures
under ambient [CO2] outside the plots (26.8 T 0.3-C; P 0 0.03). Because the
pipes surrounding the plot are dry, they are warmer and so appear as white or
light yellow. Greater canopy temperatures under elevated [CO2] result from
lower stomatal conductance, reducing latent heat loss by evapotranspiration
and leading to lower crop water use, as described in Leakey et al. (30).
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ical expectation that C
4
photosynthesis is CO

2
-

saturated at current atmospheric [CO
2
] (10);

therefore, no yield increase would be expected

for well-watered crops. Under drought, elevated

[CO
2
] increased midday photosynthesis by 23%

in sorghum (31). This failed to translate into a

significant yield increase (32). On average, no

significant yield increase has been observed for

C
4
crops or C

4
wild grasses at elevated [CO

2
]

in FACE studies (28). This is in sharp contrast

to the large stimulation of yield for well-

watered plants in chambers (Fig. 2B) used to

parameterize models. This suggests that the

consistent stimulation of C
4
crop yield by ele-

vated [CO
2
] currently applied in models is

inappropriate. At best, yield will in all prob-

ability be enhanced by elevated [CO
2
] only in

times and places of drought.

Wheat and rice FACE experiments included

nitrogen treatments. At the lowest [N] (15 to 70

kg of N haj1), the average yield increase with

elevated [CO
2
] was only 9% (28), just over

one-third of that of the chamber response

(Table 1). Although this N input treatment

was considered low by the standards of

intensive agriculture in the European Union

and United States, these levels exceed the

world average and may therefore be closer to

the stimulation factor for crop yields across the

globe. Lower-than-expected yields under ele-

vated [CO
2
] are not just confined to grain

crops. For example, the major C
3
herbage

grass, Lolium perenne, also showed a yield

increase of only 9% at two locations; and at the

lowest [N] (100 to 140 kg of N haj1), the yield

increase was an insignificant 1% (table S2)

(28). Although the data here apply to a single

species, L. perenne is one of the most important

and widely grown herbage grasses in the

temperate zone.

No FACE experiment has been conducted

in the tropics, but two factors emerging from

temperate studies have particular implications

for tropical crops. First, the CO
2
fertilization

effect may be small without large additions of

N. Second, FACE experiments with the major

grain crops of sub-Saharan Africa, sorghum and

maize, have so far failed to show any yield in-

crease from elevated [CO
2
]. Parry et al. (7)

projected that yield losses in these countries due

to climate change could be 10 to 30% by 2050,

but these would be ameliorated to only 2.5 to

5% when the CO
2
fertilization effect is added

(7). The FACE experiments suggest that this

amelioration may be far less than expected.

Rising surface ozone. Increased combustion

of fuels will increase not only atmospheric

[CO
2
] but also atmospheric nitrogen oxide con-

centrations, which, when coupled with climate

change, will result in a continued increase in

surface ozone concentration ([O
3
]). Many rural

areas in the temperate zone of the Northern

Hemisphere, as well as in the tropics, are forecast

to see increases in [O
3
] of È20% by midcentury

(8). Ozone is toxic to plants at concentrations as

low as 30 parts per billion (ppb). Although

chamber studies have shown large yield losses

owing to elevated [O
3
] (33), these effects are

not incorporated in current projections of future

yields (2, 8).

Until very recently, the only studies of the

effects of elevated [O
3
] on crops were conducted

in chambers, and it was unclear whether simi-

lar losses would occur under conditions of nor-

mal canopy/atmosphere coupling in the field.

Morgan et al. (34) used a FACE system adapted

to elevate [O
3
] rather than [CO

2
] to examine

whether the decreases in yield for soybeans in

central Illinois projected from chamber experi-

ments occurred in the open air. A 23% increase

in [O
3
] from an average daytime ambient con-

centration of 56 to 69 ppb over two growing

seasons decreased soybean yield by 20%. How

does this compare with the expectations estab-

lished from chamber studies? Based on a prior

compilation of chamber studies (33), the ex-

pected decrease was 8%. If the effects of [CO
2
]

and [O
3
] observed in FACE studies are additive,

then the net effect of simultaneous increases in

[O
3
] and [CO

2
], as forecast by the IPCC A1B

scenarios, would be a 5% decrease in yield,

compared with the 23% increase used to pa-

rameterize current models (Table 1). Chamber

studies suggest that elevated [CO
2
] may provide

some protection against elevated [O
3
] and there-

fore the effects will not be additive, but this has

yet to be verified for any crop under open-air

field conditions.

What is needed? The CO
2
fertilization ef-

fects, derived from chamber experiments, cur-

rently used in crop models forecast substantial

increases in future crop production under con-

ditions associated with climate change. The

FACE experiments, conducted in open fields,

are not without their limitations (26, 35), but rep-

resent our best simulations of the future elevated

[CO
2
] environment. Our meta-analytic summary

of the FACE experiments indicates that there

will be a much smaller CO
2
fertilization effect

on yield than currently assumed, and possibly

little or no stimulation for C
4
crops.

The average yield increase at elevated [CO
2
]

for crops in FACE studies fell well short of the

Fig. 2. Effects of elevated [CO2] on crop yield. Data are yields at elevated [CO2] relative to those at
ambient [CO2] (arrow) for (A) soybeans in chambers (solid blue circles) and FACE (blue square, hidden
behind red square) and wheat in chambers (red circles) and FACE (red square); and (B) C4 crops (maize
and sorghum combined) in chambers (green circles) and FACE studies (green square). Error bars
indicate mean T 90% confidence intervals around the means for the FACE studies. The chamber studies
included 115 independent measures of soybeans (21), 211 of wheat (36), and 14 of maize and
sorghum (table S3). These measures were divided into 10 classes of growth [CO2] in 100-ppm
increments. Plotted values are the class means of growth [CO2] and yield. Solid lines are the least-
squares fits for the nonrectangular hyperbolic response of yield to growth [CO2] from these enclosure
studies of soybeans (blue line, r2 0 0.98), wheat (red line, r2 0 0.88), and C4 crops (green line, r2 0
0.99). The yield response of soybeans in chambers to growth [CO2] of 900 to 999 ppm [open blue circle
in (A)] was an outlier and was excluded from the curve fitting. Full details of the meta-analysis methods
and results from FACE are presented in the SOM and table S2.

Fig. 3. Comparison of theoretical and actual
changes in C3 crop production parameters at an
elevated [CO2] of 550 ppm relative to ambient
[CO2]. Theory, theoretical RuBisCO-limited photo-
synthesis at 550 ppm [(9) and SOM]; A¶, mea-
sured daily integral of carbon uptake; biomass,
final above-ground biomass; yield, harvestable
grain yield. Error bars indicate mean T 90%
confidence intervals. A¶, biomass, and yield were
measured in C3 crops exposed to elevated [CO2]
in FACE experiments (table S2).
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theoretically possible increase based on the

well-defined properties of RuBisCO (Fig. 3).

At 25-C, an increase in [CO
2
] to 550 ppm

should increase light-saturated photosynthesis

by 36%. The average increase observed for C
3

crops in FACE was 20% for the daily integral

of photosynthetic CO
2
uptake, 17% for total

biomass, and just 13% for yield (Fig. 3). This

suggests that a series of feedbacks operate in

the field to constrain realization of the potential

benefits of elevated [CO
2
]. Only with a

thorough high-priority R&D effort might we

overcome these feedbacks and achieve the

potential gains in food supply.

The FACE experiments clearly show that

much lower CO
2
fertilization factors should be

used in model projections of future yields;

however, the present experiments are limited in

the range of growing conditions that they cover.

Scientists have not investigated the interactive

effects of simultaneous change in [CO
2
], [O

3
],

temperature, and soil moisture. Technological

advances suggest that large-scale open-air

facilities to investigate these interactions over

controlled gradients of variation are now pos-

sible (26). Although we have projected results

to 2050, this may be too far in the future to spur

commercial R&D, but it must not be seen as

too distant to discourage R&D in the public

sector, given the long lead times that may be

needed to avoid global food shortage.
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Frictional Afterslip Following the 2005
Nias-Simeulue Earthquake, Sumatra
Ya-Ju Hsu,1* Mark Simons,1 Jean-Philippe Avouac,1 John Galetzka,1 Kerry Sieh,1

Mohamed Chlieh,1 Danny Natawidjaja,2 Linette Prawirodirdjo,3 Yehuda Bock3

Continuously recording Global Positioning System stations near the 28 March 2005 rupture of the
Sunda megathrust [moment magnitude (Mw) 8.7] show that the earthquake triggered aseismic
frictional afterslip on the subduction megathrust, with a major fraction of this slip in the up-dip
direction from the main rupture. Eleven months after the main shock, afterslip continues at rates
several times the average interseismic rate, resulting in deformation equivalent to at least a
Mw 8.2 earthquake. In general, along-strike variations in frictional behavior appear to persist over
multiple earthquake cycles. Aftershocks cluster along the boundary between the region of coseismic
slip and the up-dip creeping zone. We observe that the cumulative number of aftershocks increases
linearly with postseismic displacements; this finding suggests that the temporal evolution of
aftershocks is governed by afterslip.

S
lip on faults occurs as a combination of

relatively continuous aseismic creep and

transient slip events. These transient events

occur as earthquakes radiating seismic waves,

and also as aseismic events with characteristic

time scales of days to years. A better understand-

ing of the physical factors that control the

relative amounts and location of seismic and

aseismic slip is a key goal in the study of fault

mechanics and in particular can affect assess-

ments of regional seismic and tsunami hazards.

After a large earthquake, postseismic deforma-

tion may result from earthquake-induced slip

along the plate interface, commonly referred to

as afterslip, and as viscoelastic relaxation in the

volume surrounding the fault rupture (1–3).

Thus, well-positioned postseismic observations

can probe the mechanical properties of sub-

duction megathrusts and the media that sur-

round them.

Geodetic and seismological investigations

suggest that typical subduction megathrust

earthquakes involve fault rupture at depths be-

tweenÈ10 km andÈ50 km, and that rupture all

the way up to the trench is rare (4). However,

evidence for slip on the shallowest portions of a

megathrust has been notoriously difficult to

evaluate. We commonly assume that seismic

slip decreases in both up-dip and down-dip

directions, presumably bounded by regions

where frictional behavior of the fault does not

support stick-slip (i.e., seismic) rupture (5).
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