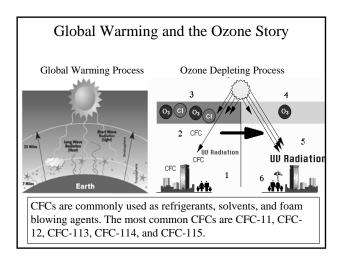


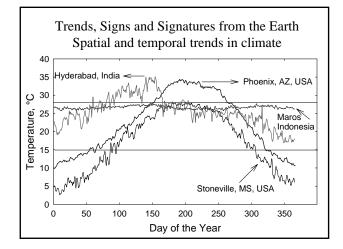
	Percentag	ge change from Ye	ear 1985 to 2000	
	Cropland area	Irrigated area	Salinized area	
		Mha		
China	124.0	54.4 (22%)	7-8 (14%)	
India	161.8	54.8 (31%)	10-30 (50%)	
USA	177.0	22.4 (13%)	4.5 -6 (15%)	
USSR	204.1	19.9 (2%)	2.5-4.5 (21%)	
World	1364.2	271.7 (21%)	62-82 (37%)	

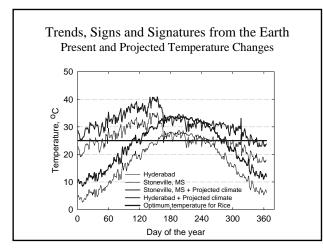
Feeding 10 Billion Mouths We must develop the capacity to feed 10 billion people within in the next 40 to 50 years. The average world current cereal yield is about 3 tons per ha for about 6.4 billion people. We need about 4 tons per ha for 8 billion (33 % more than the current), and 5 tons per ha for 10 billion (67 % more than the current).


Routes to Greater Food Production

- Increase in the area of land under cultivation.
- Increase in the number of crops per hectare per year (mostly practiced in tropics, requires access to irrigation, high input use, short season cultivars, and others such as labor, pest and disease control may be a problem).
- Displacement of lower yielding crops by higher yielding ones (done since the dawn of domestication).
- Efficiency of crop production in terms of: Per unit of land area (yield per ha) Per unit of time Per unit of inputs such as fertilizers, water and labor etc.

Trends, Signs and Signatures from the Earth


- Greenhouse gases (CO2, CH4, N2O etc.)
- Temperatures
- Glaciers, oceans and sea-levels
- Precipitation patterns and drought intensities
- Extreme events
- · Higher ozone and UV-B radiations



Trend Past and (Current Chan	Levels	in GH Atmosp	G Concen heric Lif		Rates of
Period	CO ₂	Methane	Nitrous oxide	CFC-11	HFC-23	Perfluro- methane
Pre-industrial concentration (1850)	about 280 ppm	about 700 ppb	about 270 ppb	0	0	40 ppt
Current Concentration in 2008	386 ppm	1857 ppb	321 ppb	244 ppt	18 ppt	74 ppt
Rate of change	1.43 ppm/yr	7.0 ppb/yr	0.8 ppb/yr	-1.4 ppt/yr	0.55 ppt/yr	1 ppt/yr
Atmospheric lifetime	5 to 200 years	12 years	114 years	45 years	260 Years	>50,000 years

Trends, Signs and Signatures from the Earth Future trends in global carbon dioxide concentration and associated climate change, if no interventions are made

Climate variable	2025	2050	2100
Carbon dioxide concentration	405-460 ppm	445-640 ppm	720-1020 ppm
Global mean temperature change from the year 1990	0.4-1.1 °C	0.8-2.6 °C	2.4-6.4 °C
Global mean sea- level rise from the year 1990	3-14 cm	5-32 cm	26-59 cm

Climate Change and Crop Productivity Some Considerations

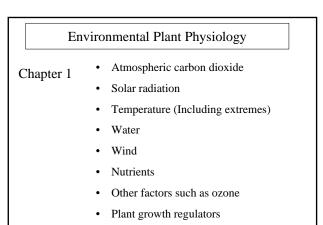
- As human population expands and demand upon natural resources increases, the need to manage the environments in which people live becomes more important, but also more difficult.
- Climate change has no boundaries, and can't be viewed in isolation.
- We should consider other stresses on food production systems such as population dynamics, habitat destruction and fragmentation, land-use changes, biodiversity, land and water management and invasive species dominance.

Climate Change and Crop Productivity Some Considerations

- Land and water management is especially critical as the use of upstream watersheds can drastically affect large numbers of people living in downstream watersheds.
- The current and projected changes in climate are unprecedented, and the ecosystems including managed ecosystems such as agriculture may not cope with the changes projected in climate.
- An integrated approach that stresses both the importance of participatory planning and the institutional and technical constraints and opportunities is therefore necessary.

Environmental Stresses and Plant Growing Conditions

Environmental and Cultural Factors Limiting Potential Yields


- Atmospheric carbon dioxide
- > Solar radiation
- Temperature (including extremes)
- > Water (irrigation and rainfall)
- > Wind
- Nutrients (N, P, K, and other nutrients)
- > Others, Ultra-violet radiation, ozone etc.,
- Growth regulators (such as PIX)

Area of Total World Land Surface Subject to Environmental Limitations of Various Types

Limitation A	Area of world soil subject to limitation (%)
Drought	27.9
Shallow soil	24.2
Mineral excess or defici	iency 22.5
Flooding	12.2
Miscellaneous	3.1
None	10.1
Total	100
Temperature	14.8 (over laps with other stresses)

Environmental Plant Physiology Objectives

- The objectives of this course are to learn plant responses to abiotic stresses, particularly plant growth and development, and to learn modeling methodologies on how to integrate those plant processes under multiple stress conditions.
- At the end, the students are expected to:
 - ✓ understand individual as well as interactive abiotic stress effects on photosynthesis, respiration, growth, development and finally yield.
 - understand on how to develop methodologies to integrate multiple stress factor effects on various plant/canopy processes.

• The facilities and tools

Environmental Plant Physiology

Chapter 2

Photosynthesis and the environment

- The Environmental productivity Index (EPI) concept.
- The photosynthesis Species variability.
- Photosynthesis and aging process.
- Respiration.

Environmental Plant Physiology

Chapter 3

Crop growth and development

- Phenology
- Growth of various organs and whole plants.
- The concept of environmental productivity index in quantifying crop growth and development in response to the environment.

Environmental Plant Physiology

Chapter 4

Scaling of processes from leaves to whole plant, canopies or ecosystems.

Chapter 5

Special topics include:

- Plant growth regulators PIX.
- Remote sensing and environmental plant physiology.

Environmental Plant Physiology Introduction

Suggested reading:

Feeding the Ten Billion-Plants and Population Growth- 1998, L. T. Evans, Chapter 12, pages 195-225.

Crop Science Progress and Prospects- 2000, edited by J. Nosberger, H. H. Geiger and P. C. Struik, Chapter 3, Crop Science research to assure food security by K.G. Cassman, pages, 33-51.

Crop Responses to Environment –2001, A. E. Hall. Chapter 1, Introduction, pages 1-7.

Meeting cereal demand while protecting natural resources and improving environmental quality, KG Cassman, A. Dobermann, DT Walters and H. Yang, Annual Review of Environmental Resources, 2003, 28:315-358.