Quantifying the Effects of Temperature and Nitrogen on Switchgrass Growth and Development

K. Raja Reddy
S. K. Matcha, S.K. Singh, David Brand and R. Seepaul
Department of Plant and Soil Sciences

Mississippi State University
A Land-Grant Institution
Introduction and Background

- **Switchgrass** (*Panicum virgatum*) is one of the dominant grass species with C4 syndrome.
- Highly productive, 9 to 14 Mg ha\(^{-1}\) across a range of growing conditions.
- Ecologically and energetically important and valuable plant species.
- Temperature- and nitrogen-specific functional relationships will be useful to improve the current models.
Objectives:

• To investigate the effects of temperature and nitrogen nutrition on switchgrass growth and development.

• To provide temperature- and nitrogen-dependent functional algorithms for switchgrass growth, development and physiology for modeling.
Approach:

➤ Experiment I was designed to generate functional algorithms between temperature and switchgrass growth and development in the SPAR Units.

www.spar.msstate.edu
Materials and Methods

Experiment I: Temperature study:

— Cultivar, Alamo.

— All plants were grown in the SPAR chambers from sowing to 34 days after sowing at 28/20 °C and 400 ppm [CO$_2$].

— Temperature treatments were imposed at 34 days after sowing on established plants for 69 days (103 days of sowing).

— Optimum water and nutrient conditions were provided throughout the experiment.
Materials and Methods

Experiment I: Temperature study:

<table>
<thead>
<tr>
<th>Day/Night temperature, °C</th>
<th>Average temperature, °C</th>
<th>SPAR Chamber [CO₂], ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/14</td>
<td>18.4</td>
<td>400</td>
</tr>
<tr>
<td>28/20</td>
<td>23.7</td>
<td>400</td>
</tr>
<tr>
<td>34/26</td>
<td>29.0</td>
<td>400</td>
</tr>
<tr>
<td>40/32</td>
<td>34.7</td>
<td>400</td>
</tr>
</tbody>
</table>
Materials and Methods

Experiment I: Measurements:

— Measured plant height and leaf numbers weekly.

— Panicle appearance was recorded when 50% of the plants showed panicles on the first tiller in each plant.

— Destructive leaf area and dry weights measurements were done three times.

 — 55 DAS and 21 DAT - 6 rows of 10 plants per row
 — 76 DAS and 42 DAT – 2 rows of 10 plants per row
 — 103 DAS and 69 DAT – 3 rows of 10 plants per row

— Monitored photosynthesis twice during the growing season.
Temperature & Switchgrass Growth and Development

Photosynthesis

Photosynthesis rate (µmole CO₂ m⁻² s⁻¹)

Temperature (°C)

1500 µmol m⁻² s⁻¹ PAR
Temperature & Switchgrass Growth and Development

Stem length

![Graph showing the effect of different temperatures on switchgrass growth. The x-axis represents days after sowing, and the y-axis represents plant height in cm. The graph includes lines for temperatures of 20/14 °C, 28/20 °C, 34/26 °C, and 40/32 °C, each with error bars indicating variability. The lines show a positive correlation between days after sowing and plant height, with higher temperatures resulting in greater growth.]
Temperature & Switchgrass Growth and Development

Leaf developmental rates

Days after sowing

Leaves (no. plant$^{-1}$)

Days after sowing

20/14 °C

28/20 °C

34/26 °C

40/32 °C
Temperature & Switchgrass Growth and Development

Stem elongation rate

\[Y = -3.0688 + 0.2607X - 0.00391X^2; \, r^2 = 0.99 \]
Temperature & Switchgrass Growth and Development

Leaf addition rate

\[Y = 0.00956 + 0.004094 \times X; \quad r^2 = 0.97 \]
Temperature & Switchgrass Growth and Development

Tiller development

![Graph showing the relationship between temperature (°C) and tillers (no. plant⁻¹) for different dates (21 DAT, 42 DAT, 69 DAT). The graph illustrates a positive correlation between temperature and tiller development.]
Temperature & Switchgrass Growth and Development

Whole plant leaf area development

![Graph showing the relationship between temperature and whole plant leaf area development for different days after treatment (DAT). The graph plots temperature (°C) on the x-axis and leaf area (cm² plant⁻¹) on the y-axis. Three lines represent different DAT: 21 DAT, 42 DAT, and 69 DAT. Each line indicates the average leaf area across different temperatures with error bars for variability. The graph includes letters indicating significant differences at each temperature.]
Temperature & Switchgrass Growth and Development

Plant biomass

![Graph showing the effect of temperature on plant biomass growth at different days after treatment (DAT). The graph plots total dry weight (g plant⁻¹) against temperature (°C) for 21, 42, and 69 DAT. Different letters indicate statistically significant differences between treatments.]
Temperature & Switchgrass Growth and Development

Flowering or Panicle initiation

<table>
<thead>
<tr>
<th>Day/night and average temperature, °C</th>
<th>Time to 50% panicle formation, days</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/14 = 18.4</td>
<td>0.0</td>
</tr>
<tr>
<td>28/20 = 23.7</td>
<td>96 ± 3.2</td>
</tr>
<tr>
<td>34/26 = 29.0</td>
<td>80 ± 2.6</td>
</tr>
<tr>
<td>40/32 = 34.7</td>
<td>87 ± 2.0</td>
</tr>
</tbody>
</table>
Temperature & Switchgrass Growth and Development

Reproductive development – 103 days after sowing

<table>
<thead>
<tr>
<th>Day/night and average temperature, °C</th>
<th>Panicles, no. plant(^{-1})</th>
<th>Panicle weight, g plant(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/14 = 18.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>28/20 = 23.7</td>
<td>3.0 ± 0.60</td>
<td>0.80 ± 0.3</td>
</tr>
<tr>
<td>34/26 = 29.0</td>
<td>7.7 ± 0.46</td>
<td>2.94 ± 0.6</td>
</tr>
<tr>
<td>40/32 = 34.7</td>
<td>6.0 ± 0.60</td>
<td>1.90 ± 0.4</td>
</tr>
</tbody>
</table>
Summary and Conclusions

- Developmental rates such as leaf addition and tiller numbers increased linearly from 15 to 35 °C.

- Time to 50% panicle initiation, however, took 7 additional days at 35°C than at 29°C. Plants grown at 23.4 °C took 96 d, and plants grown at the lowest temperature didn’t initiate panicles during a 103-days period.

- Rates of stems, leaf area development, and biomass accumulation increased linearly from 15 to 29 °C, but unaltered or slightly decreased at 35 °C.
Summary and Conclusions

• Photosynthetic rates followed similar trends with that of biomass and leaf area developmental trends in response to temperature.

• Functional algorithms can be developed from these database, and if incorporated into simulation models might improve the predictability of the models in the real-world situations.
Experiment II was conducted to investigate switchgrass growth and development as affected by nitrogen grown in large pots outdoors.

Approach:
Materials and Methods

Crop husbandry

- Out-door, pot –culture facility (PVC pots with 12-L capacity).
- Row spacing 1 m and 10 plants per pot.
- 120 pots, 40 pots for each treatment, 4 replications per treatment.
- Irrigation - Full strength Hoagland's nutrient solution from emergence to 45 DAS.
Materials and Methods

Nitrogen treatments

• From 45 to 90 days of sowing, the following treatments were imposed:

 ➢ Treatment 1: Continued with Hoagland’s solution (100% N)
 ➢ Treatment 2: 20% of Treatment 1 (20% N)
 ➢ Treatment 3: 0% of Treatment 1 (0% N)

• Well-watered (3-times a day) and all other nutrients supplied.
Materials and Methods

Growth and Physiological Measurements

- Growth measurements, photosynthesis and pigments were collected at 4-day interval.

- Leaf samples were also collected for nitrogen determination at 4-day interval.

- Biomass was collected at 90 days after sowing.
Nitrogen Switchgrass Growth and Development

End of the season growth parameters
90 days after sowing or 45 days after treatment

<table>
<thead>
<tr>
<th>Nitrogen Treatment</th>
<th>Total biomass, g pot⁻¹</th>
<th>Tillers, no. pot⁻¹</th>
<th>Leaf area, m² pot⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% N</td>
<td>317 ± 28</td>
<td>91 ± 6</td>
<td>1.5 ± 0.09</td>
</tr>
<tr>
<td>20% N</td>
<td>276 ± 16</td>
<td>77 ± 2</td>
<td>1.2 ± 0.04</td>
</tr>
<tr>
<td>0 % N</td>
<td>219 ± 7</td>
<td>54 ± 6</td>
<td>0.7 ± 0.02</td>
</tr>
</tbody>
</table>
Leaf Nitrogen and Photosynthesis

Switchgrass – Temporal Trends in leaf Nitrogen

- 100% N - $Y = 2.67 - 0.05622X + 0.001171X^2; r^2 = 0.78$
- 20% N - $Y = 2.75 - 0.06962X + 0.001087X^2; r^2 = 0.93$
- 0% N - $Y = 2.62 - 0.09239X + 0.001407X^2; r^2 = 0.95$

Leaf Nitrogen, g m$^{-2}$

Days after treatment
Leaf Nitrogen and Photosynthesis

Switchgrass Photosynthesis and Leaf Nitrogen

![Graph showing the relationship between temperature (°C) and transpiration (mmol m⁻² s⁻¹). The graph depicts a positive correlation between temperature and transpiration.]
Leaf Nitrogen and Photosynthesis

Switchgrass Photosynthesis and Leaf Nitrogen

\[Y = 6.75 + 12.98 \times X; r^2 = 0.69 \]
Leaf Nitrogen and Photosynthesis

Functional Groups

Leaf photosynthesis

Environmental Productivity Indices

Leaf N, g m⁻² leaf area

Cotton - C3
Corn - C4
Leaf Nitrogen and Photosynthesis

N and Photosynthesis – Several Crops

Leaf photosynthesis

Environmental Productivity Indices vs. Leaf N, g m\(^{-2}\) leaf area

- Cotton - C3
- Castor - C3
- Corn - C4
Leaf Nitrogen and Photosynthesis

N and Photosynthesis – Several Crops

Leaf photosynthesis

Environmental Productivity Indices

Leaf N, g m\(^{-2}\) leaf area
Leaf Nitrogen and Crop Growth and Development

N and Several Crops – Stem Elongation Rates
Leaf Nitrogen and Crop Growth and Development

N and Several Crops – Leaf Area Expansion Rates

![Graph showing the relationship between Leaf Area Expansion Rate and Leaf N, g m\(^{-2}\) leaf area for Cotton - C3, Castor - C3, Switchgrass - C4, and Corn - C4.](image)
Summary and Conclusions

Nitrogen Responses across Species and Processes

- Functional algorithms varied among crop species and even among crop species within the functional physiological group such as C$_3$ and C$_4$ species.

- Functional algorithms also varied among crop processes in a given species.

- Among the growth, developmental and physiological processes, leaf growth was more responsive to leaf N in all crops.

- The N-specific functional algorithms will be useful in developing models for various crops.
Acknowledgements

This project is funded by Sustainable Energy Research Center at MSU through Department of Energy.

http://www.serc.msstate.edu/
www.spar.msstate.edu

Questions or Comments?